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ABSTRACT

Scalar and vector partitions of the probability score (PS) in the two-state situation are described and
compared. These partitions, which are based upon expressions for the PS in which probability forecasts are
considered to be scalars and vectors, respectively, provide similar, but not equivalent (i.e., linearly related),
measures of the reliability and resolution of the forecasts. Specifically, the reliability (resolution) of the
forecasts according to the scalar partition is, in general, greater (less) than their reliability (resolution)
according to the vector partition. A sample collection of forecasts is used to illustrate the differences between

these partitions.

Several questions related to the use of scalar and vector partitions of the PS in the two-state situation are
discussed, including the interpretation of the results of previous forecast evaluation studies and the relative
merits of these partitions. The discussions indicate that the partition most often used in such studies has
been a special “‘scalar’’ partition, a partition which is equivalent to the vector partition in the two-state
situation, and that the vector partiticn is more appropriate than the scalar partition.

1. Introduction

Sanders (1958, 1963) demonstrated that the proba-
bility score (PS) (Brier, 1950) for a collection of proba-
bility forecasts, in which the probabilities can assume
only a finite set of values, can be partitioned into two
terms, each of which is a measure of a particular attri-
bute of the forecasts. Sanders’ partition is based upon
an expression for the PS in which a probability forecast
is considered to be a scalar quantity, i.e., in which each
probability is considered to be a separate forecast
(Sanders, 1963, p. 192).3

In reality, a probability forecast consists of a set of
two or more probabilities. Thus, we believe that such a
partition should be based upon an expression for the PS

in which a probability forecast is considered to be a.

vector quantity. The purposes of this paper are to de-
scribe and compare scalar and vector partitions of the

! Contribution No. 199 from the Department of Meteorology
and Oceanography, University of Michigan.

2 Present affiliation: Advanced Study Program, National
Center for Atmospheric Research, Boulder, Colo. The National
Center for Atmospheric Research is sponsored by the National
Science Foundation.

3 Sanders states that “we have chosen to consider each indi-
vidual probability statement as a separate forecast.” However, in
two-state, i.e., ‘precipitation-no precipitation’”’ situations,
Sanders actually considers only the probabilities assigned to one
of the two states. These considerations lead to the formulation of
two different partitions, the scalar partition and the special
“scalar’’ partition, respectively (see Sections 3, 6 and 7).

PS and to briefly discuss several questions related to the
use of these partitions. In this paper we consider only
the two-state ((V=2) situation. We shall describe and
compare scalar and vector partitions of the PS in
N-state (N>2) situations in a separate paper (see
Murphy, 1971b).

In Section 2 we describe the differences between scalar
and vector forecasts and observations and introduce
notation to identify these quantities. We obtain ex-
pressions for the scalar and vector partitions of the PS
in Sections 3 and 4, respectively. In Section 5 we com-
pare the scalar and vector partitions and demonstrate
that these partitions are not equivalent, i.e., linearly
related. A sample collection of forecasts is used to
illustrate the differences between these partitions in
Section 6. Several questions related to the use of such
partitions are discussed in Section 7, including the
interpretation of the results of previous forecast evalu-
ation studies and the relative merits of these partitions.
Section 8 consists of a brief summary and con-
clusion.

2. Scalar and vector forecasts and observations

We assume that the forecasts and observations relate
to situations in which the range of the variable of con-
cern has been divided into a set of two mutually ex-
clusive and collectively exhaustive states {si, sa}.
Specifically, we assume that the variable of concern is
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J16. 1. Two occasions on which the forecast probabilities of
precipitation are 0.2 and 0.8, respectively, depicted within the
appropriate framework when forecasts are considered to be
(a) scalars and (b) vectors.

precipitation amount and that the two states are
“precipitation” (s1) and “no precipitation” (s2).

When the probability assigned to each state on each
occasion is assumed to constitute a forecast, we denote
the forecast by a scalar » (0<7< 1) and the relevant
observation by a scalar d, where d equals one if the
state of concern occurs and zero otherwise. On the
other hand, when the probabilities assigned to the set
of states on each occasion are assumed to constitute a
forecast, we denote the forecast by a row vector

r=(7’1172)(rn>072 1’,,=1;1’L=1,2>,

and the relevant observation by a row vector d=(dy,ds),
where d,, equals one if state s, occurs and zero otherwise
(n=1, 2).

In order to indicate the differences between scalar
and vector forecasts, we consider two occasions on
which the forecast probabilities of precipitation are
0.2 and 0.8, respectively. In the scalar framework we
would have four forecasts (r), two for which the proba-
bility (r) is 0.2, one relating to precipitation and one
relating to no precipitation, and two for which the
probability (r) is 0.8, one relating to precipitation and
one relating to no precipitation. On the other hand, in
the vector framework we would have only fwo forecasts
(r), one for which the probabilities of precipitation (r1)
and no precipitation (rz) are 0.2 and 0.8, respectively,
and one for which the probabilities of precipitation (r1)
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and no precipitation (r;) are 0.8 and 0.2, re-
spectively.

We can also indicate the differences between scalar
and vector forecasts by describing the appropriate
framework within which to depict the forecasts. When
forecasts are considered to be scalars, they can be
depicted simply as points on a unit line segment. Each
point on this line segment corresponds to a particular
scalar forecast (and vice versa), and the end points of
the line segment represent the observations as well as
the categorical forecasts.* When forecasts are considered
to be vectors, they can be depicted within the frame-
work of a regular (V—1)-dimensional simplex.’ In
the two-state (V¥ =2) situation the regular simplex
can be represented as a unit line segment, in which a
“length” coordinate system is used to depict the fore-
casts.®7 Each point on this line segment corresponds to
a particular vector forecast (and vice versa), and the
end points of the line segment represent the observa-
tions as well as the categorical forecasts.® The proba-
bilities on the two occasions of concern are depicted as
scalar and vector forecasts in Figs. 1la and 1b,
respectively.

The partitions of the PS of concern in this paper
are based upon the assumption that the probabilities
which constitute the forecasts can assume only a finite
set of values. Specifically, we assume that the collection
of forecasts of concern consists of M scalar or K (=M /2)
vector forecasts and that the probabilities can assume
only S distinct values. Then, we can identify .S distinct
scalar forecasts and T distinct vector forecasts, where

4In the scalar framework the right-hand end point represents
the occurrence, and the categorical forecast of the occurrence, of
the state of concern (i.e., precipitation or no precipitation), while
the left-hand end point represents the non-occurrence, and the
categorical forecast of the non-occurrence, of the state of concern.

5 A regular simplex is a line segment in the two-state (N=2)
situation, an equilateral triangle in the three-state (N =3) situa-
tion, and a regular tetrahedron in the four-state (¥ =4) situation
(see Pontryagin, 1952, 10-12; see also Murphy, 1971a,b).

6 In a regular simplex in which a “content’’ coordinate system
is used to depict the forecasts, the perpendicular distances between
the point (in the simplex) which represents a vector forecast and
the “faces’”” of the simplex are equal to the components of the
forecast. Thus, in the two-state (N=2) situation, in which a
content coordinate system becomes a length coordinate system,
the distances between the point which represents a vector fore-
cast and the end points of the unit line segment are the two com-
ponents of the forecast (see Springer, 1964, 119-122).

7In the two-state (IV=2) situation, then, the unit line segment
represents an appropriate framework within which to depict both
scalar and vector forecasts. Scalar forecasts can always be de-
picted within this framework. On the other hand, the appropriate
framework within which to depict vector forecasts is the (¥ —1)-
dimensional simplex (see footnote 5). Thus, the differences
between scalar and vector forecasts become more evident in
N-state (IV>2) situations.

8 In the vector framework the right-hand end point represents
the occurrence, and the categorical forecast of the occurrence, of
precipitation and the non-occurrence, and the categorical forecast
of the non-occurrence, of no precipitation, while the left-hand end
point represents the occurrence, and the categorical forecast of
the occurrence, of no precipitation and the non-occurrence, and
the categorical forecast of the non-occurrence, of precipitation.
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T is equal to S in the two-state (IV =2) situation.? Thus,
we can identify S subcollections of scalar forecasts,

where subcollection s consists of the M# scalar forecasts
for which

tm=r(m=1,..., M* > M*=M;s=1,...,5),

and T subcollections of vector forecasts, where sub-
collection ¢ consists of the K* vector forecasts for which

n=r(k=1,..., K4, Y. Ki=K;i=1,...,T),
¢

where 1y = (r15,721) and rt=(r,%,r2*). For these subcollec-
tions we denote the relevant scalar observations by
dn® (m=1, ..., M*) and the relevant vector observa-
tions by dit (k=1, ..., K*), where d;* = (d1c",d2i?).

3. Scalar partition

The PS for a collection of M scalar forecasts 7.,
(m=1, ..., M) is PS(r,d), where

PS(t)=(1/M) £ (=i @

(Sanders, 1958, p. 38; Sanders, 1963, p. 192). Note that
the range of PS(r,d) is the closed unit interval [0,1].

For the subcollection of M* forecasts for which 7,, =73,
the PS is PS*(r,d), where

8

PS rd) = (/M%) 3 (rrm ),

m=

or, since d»* equals one or zero,

PS*(r,d)=(r*)2—2r[(1/M?) é dm]

M3

+/M°) X du.

m=1

(2)

? We use different superscripts to identify these distinct scalar
and vector forecasts in the two-state (N =2) situation in order
to ensure that the reader is able to distinguish between scalar
forecasts and observations and the components of vector forecasts
and observations. Moreover, while the number of distinct scalar
forecasts is S in N-state (IV>>2) as well as in two-state situations,
the number of distinct vector forecasts in N-state (N >2) situa-
tions is 7', where

r=%

g=1
in which (;)=xl[y!(x—y)!:] for 03 y>w, (;)=1 for x=—1,

y=0, and (;) =0 otherwise. This expression is valid only if the

8 fN+4s—4
( )(S—s+1),

s—1

set of S distinct scalar forecasts r*(s=1, - - -, S) includes the values
one and zero and if the difference between adjacent probability
values is constant. For example, if this difference is 0.1 in a three-
state (N=3) situation, then S=11 and »¢=0.0(0.1)1.0 and,
as a result, I'=66 and r'=(1.0,0.0,0.0), (0.9,0.1,0.0), ---,
(0.0,0.0,1.0). Note that, in general, 7' is greater than or equal to S
and that T equals S only in the two-state situation.
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Let
dw®=d*+(d»%)°,
where
_ M8
de=(1/M?) 3 du?
m=1

and (d,,*)° is the difference between d,,* and d*. If we
substitute d* into (2) and complete the square, then
PS4(r,d) becomes

PS#(r,d) = (r*—d*)*+d*(1—d). 3)

Therefore, PS(r,d), the weighted sum of the sub-
collection scores, can be expressed as

PS(r,d)y=(1/M) ZS: Ms(rs—d®)?

S - -
+(/M) 2 Mede(1—d). (&)
s=1
PS(r,d), in (4), represents the scalar partition of the
PS. Sanders (1958) referred to the two terms on the
right-hand side (RHS) of (4) as measures of the at-
tributes reliability and resolution, respectively.1%11

4. Vector partition

The PS for a collection of K (=M/2) vector fore-
casts rp=(rix,72e) (k=1, ..., K) is PS(r,d), where

PSEA)=(/K) 5 5 (ruemdnt)?

k=1 n=1

(5a)

(Brier, 1950, p. 1; Murphy and Epstein, 1967, p. 751),

or, in vector notation,

PSE)=(/B) E (e=d)(rs=ds), ()

(see Winkler and Murphy, 1968, 751-752), where a
prime denotes a column vector. Note that the range of
PS(r,d) is the closed interval [0,2].

For the subcollection of K* forecasts for which
r.=r’, the PS is PS%(r,d), where

Kt

PSi(rd)=(1/K) 2 (¢ —=du)(r'—ds)’,

10 Subsequently, Sanders (1963) referred to these attributes as
validity and sharpness, respectively. We use the original terms
because we prefer to define the term validity in a more general
manner (see Murphy and Winkler, 1970, 281-282) and because
the term sharpness, as defined by Bross (1953, 48-52), relates to
the degree to which the forecast probabilities, rather than the
observed relative frequencies, approach one or zero.

1 Note that the measure of resolution depends directly upon
the observations and only indirectly upon the forecasts. Thus,
resolution is an attribute of the observations rather than of the
forecasts. However, since this measure depends indirectly upon
the forecasts, we shall continue to speak of the “resolution of
the forecasts.”
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or

PSHrd)=r(r")' —2r[(1/K?) 1?—:1 d:9)']

Kt
+1/K%) 22 dit(d),
k=1

or, since d;* is a vector whose elements d.;t (n=1, 2)
equal one or zero,

PS(rd)=r(r))' —2r'[(1/K?) gl @]

+L(1/KY Kg 4L, 6)

where u is a row vector whose elements both equal one,
ie, u=(1,1). Let
dkt=a‘+(dkt)°,
where
Kt

atz(l/Kt) Z dkt:

and (dg")° is the difference between dit and dt. If we

substitute d* into (6) and complete the square, then
PS*(r,d) becomes

PSt(r,d) = (r'—d%)(rt—d*)’'+-d(u—d?)". (7)

Therefore, PS(r,d), the weighted sum of the sub-
collection scores, can be expressed as

PS(rd)=(1/K) i Kt(rt—d*)(rt—d?)’

+/K) T K& -2, )

In Eq. (8), PS(r,d) represents the vector partition of
the PS. Note that the vector elements in the terms in
(8) are analogous to the scalar elements in the terms in
(4). Thus, we can refer to the two terms on the RHS
of (8) as measures of reliability and resolution, re-
spectively, when forecasts are considered to be vectors
(see footnote 11). However, in Section 5 we show that
the scalar and vector measures of these attributes are
not equivalent, i.e., linearly related.

5. Scalar and vector partitions: A comparison

Hereafter, for comparative purposes, we denote the
vector expression for the PS by PS*(r,d), where
PS*(r,d)=3PS(r,d). Note that the range of PS*(r,d)
is the closed unit interval [0,1].

The scalar partition of the PS, P.S(r,d) in (4), can be
expressed as

PS(rd) = (/M) E, M)

S 8
—23 Mowdi+ 3 M(d°)%]
s=1

s=1

S 8
+(/INL L M~ X M@ O)
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We denote the two sets of terms on the RHS of (9) by
S1 and S2, respectively, and the terms which constitute
these sets by S11, S12, and S13 and S21 and S22,
respectively. Thus,

PS(r,d)=S14-52, (10)
where
S1=S114-S12-+S13, (11)
and
S2=S821+S22. (12)

Note that S13=—S22. Thus, PS(r,d), in (10), can also
be expressed as

PS(r,d)=S11+S12+821. (13)

The vector partition of the PS, PS*(r,d), can be
expressed as

PS*ed)=(1/2K) T K T (rat—dot)?

2K Y K Y d(l~dat) (140)
[see (5a) or (8)], or as

PSed)=(/ 2K £ K

r 2 T 2
=23 K'Y rildt+ 3 KUY (da)?]
t=1 n=]

t=1 n=1

T 2 T 2
+1/2K)L L Kt 3 dat=X Kt X (da9)?] (14b)
t=1 n=] t=1 n==1
We denote the two sets of terms on the RHS of
(14b) by V1 and V2, respectively, and the terms which
constitute these sets by V11, V12, and V13 and V21 and

V22, respectively. Thus,

PS*(x,d)=V14+V2, (15)
where
V1=V114-V12+4V13, (16)
and
V2=V214V22. an

Note that V13=—V22. Thus, PS*(r,d), in (15), can
also be expressed as

PS*(r,d)=V114+V124V21. (18)

We compare the expressions for the scalar partition
PS(r,d), in (9), and the vector partition PS*(r,d), in
(14b), term by term in the Appendix. We show that
S11=V11, S12=V12, and S21=V21. Thus, from (13)
and (18),

PS(r,d)=PS*(r,d). (19)
We also show that the difference between S13 and V13,
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ie., V13—S13, is
V13—S13=(1/2K) ¥ [K:K*/(K*4+K™)]
t,t*

X(dt —da™)2+ (s —d2")?],

where the summation on the RHS of (20) is taken over
all pairs of subcollections ¢ and #* for which r'+r**=u
(t, t*=1, ..., T) (see Appendix).

Note, from (20), that

(20)

V13~S1320. (21)

Further, note that equality holds, in (21), only if
either Kt=0 or K*=0 or if di*=d,** (in which case,
d,** =dy") for all pairs of subcollections ¢ and *(r*4-r*"
=u;{, t*=1, ..., T). Finally, note, from (11) and (16),
that

V1—-S120, (22)

and from Egs. (12) and (17), since S13=—S22 and
Tasre 1. A sample collection of forecasts and the relevant ob-

servations when forecasts and observations are considered to be
(a) scalars and (b) vectors.

a. Scalar forecasts and observations
Forecast or

observation
number Forecast Observation
m i ‘ dn
1 0.2 0
2 0.8 1
3 0.6 1
4 0.4 0
5 0.9 1
6 0.1 0
7 0.2 Q
8 0.8 1
9 0.1 0
10 0.9 1
11 0.2 0]
12 0.8 1
13 0.4 1
14 0.6 0
15 0.7 1
16 0.3 0
17 0.8 1
18 0.2 0
19 0.2 1
20 0.8 0

b. Vector forecasts and observations
Iorecast or

observation
number Forecast Observation

k I di
1 (0.2,0.8) ©, 1)
2 (0.6, 0.4) (1,0)
3 (0.9, 0.1) (1, 0)
4 0.2, 0.8) ©, 1)
5 0.1, 0.9) 0, 1)
6 0.2, 0.8) ©,1)
7 (04, 0.6) (1, 0)
8 (0.7, 0.3) (1,0)
9 (0.8, 0.2) (1, 0)

10 (0.2, 0.8) 1, 0)

ALLAN H.

MURPHY 277
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o ]

ol) ' 0208 ' 0508 0802 10
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Frc. 2. The sample collection of forecasts presented in Table 1
depicted within the appropriate framework when forecasts are
considered to be (a) scalars and (b) vectors.

V13=—V22, that

V2—5250. (23)

Thus, the value of the reliability term for scalar fore-
casts is, in general, less than that for vector forecasts,
while the value of the resolution term for scalar fore-
casts is, in general, greater than that for vector fore-
casts. That is, if a collection of forecasts is considered
to consist of scalar forecasts, then the collection will
appear, in general, to have more reliability and less
resolution than if the collection is considered to consist
of vector forecasts.

6. Scalar and vector partitions: A sample collection
of forecasts

In order to illustrate the differences between the
scalar and vector partitions of the PS, we consider a
sample collection of probability forecasts. The fore-
casts and the relevant observations are presented in
Tables 1a and 1b, in which we identify these quantities
as scalars and vectors, respectively. We depict the
forecasts as scalars and vectors within the appropriate
framework in Figs. 2a and 2b, respectively.

The scalar partition for these forecasts is presented
in Table 2. Note that the values of the terms S1
(reliability) and S2 (resolution) are 0.013 and 0.130,
respectively, and that their sum, i.e., PS(r,d), equals
0.143. The vector partition for these forecasts is pre-
sented in Table 3. Note that the values of the terms
V1 (reliability) and V2 (resolution) are 0.068 and 0.075,
respectively, and that their sum, ie., PS*(r,d), also
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TasLE 2. The scalar partition for the sample collection of forecasts presented in Table 1a.
. Number Observed Subcollection Subcollection
Subcollection of relative Kernel Kernel reliability resolution
number Forecast forecasts frequency reliability resolution S1(s). S2(s) _
s 7 Ms ds (rs—d*)? ds(1—d¥) Ms(pe—d#)? Meds(1—d)
1 0.1 2 0.0 0.01 0.00 0.02 0.00
2 0.2 5 0.2 0.00 0.16 0.00 0.80
3 0.3 1 0.0 0.09 0.00 0.09 0.00
4 04 2 0.5 0.01 0.25 0.02 0.50
5 0.6 2 0.5 0.01 0.25 0.02 0.50
6 0.7 1 1.0 0.09 0.00 0.09 0.00
7 0.8 5 0.8 0.00 0.16 0.00 0.80
8 0.9 2 1.0 0.01 0.00 0.02 0.00
Total 20 0.26 2.60
Average 0.013 0.130
Tasre 3. The vector partition for the sample collection of forecasts presented in Table 1b.
Sub- Number Observed Subcollection  Subcollection
collection of relative Kernel Kernel * reliability resolution
number Forecast forecasts frequency rel_iability resolution Vi) V2(£)
t rt Kt d¢ (rt—do) (i —d»)’ dt(u—dy’ Kt(@i—do (rr—do’ K4dt(u—do’
1 (0.1,0.9) 1 (0.00, 1.00) 0.020 0.000 0.02 0.00
2 ©.2,0.8) 4 (0.25, 0.75) 0.005 0.375 0.02 1.50
3 0.4, 0.6) 1 (1.00, 0.00) 0.720 0.000 0.72 0.00
4 0.6, 0.4) 1 (1.00, 0.00) 0.320 0.000 0.32 0.00
5 0.7, 0.3) 1 (1.00, 0.00) 0.180 0.000 0.18 0.00
6 (0.8, 0.2) 1 (1.00, 0.00) 0.080 0.000 0.08 0.00
7 0.9,0.1) 1 (1.00, 0.00) 0.020 0.000 0.02 0.00
Total 10 1.36 1.50
Average* 0.068 0.075

* This average is computed on the basis of 2K =20 forecasts [see (14a)].

equals 0.143. Thus, as indicated in (22) and (23),
V1(0.068) > $1(0.013) and V2(0.075)< S2(0.130). Note
that for this collection of forecasts the resolution term
is ten times as large as the reliability term according
to the scalar partition, while the resolution term is
only slightly larger than the reliability term according
to the vector partition. Thus, while the differences
between the terms in these partitions can be expected,
in general, to decrease as the number of forecasts in a
collection increases, substantial differences may occur,
at least for small collections.

7. The use of scalar and vector partitions:
Discussion

A number of questions arise in connection with the
use of scalar and vector partitions of the PS. For
example: 1) Which partitions have been used by evalu-
ators in previous forecast evaluation studies? 2) How
sensitive are the results of these studies to the particular
partition used? 3) Which partition should an evalu-
ator use in such studies? 4) What are the effects of the
definitions of scalar and vector forecasts upon the
partitions and their use?

With regard to the first question, evaluators, in
general, have used a special “scalar’” partition, a par-
tition which is based upon an expression for the PS

in which only the probabilities assigned to one of the
two states are considered.!? If we denote this expression
for the PS by PS*(r,d), then, from (5a),

K
k=1
Thus, the special scalar partition can be expressed as

PS*(rd)=(1/K) é Ki(rat—d.t)?

T
+(1/K) ¥ K'da(1—dn?),
t=1
or, since

Y (raf—dn)?=2(rn'—d,")?

12 A determination of which partition has been used in a par-
ticular study cannot always be made. However, for those studies
for which such a determination could be made, the special scalar
partition, in general, has been the partition used. Why have evalu-
ators (including Sanders) used this partition instead of the scalar
partition proposed by Sanders (see footnote 3)? We can only
assume that they believed that these partitions were equivalent
and, as a result, used the special scalar partition because this par-
tition appeared to be easier to apply.
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TasLE 4. The special scalar partition for the sample collection of forecasts presented in Table 1
in terms of the probabilities assigned to state sy.
Number Observed Subcollection  Subcollection
Subcollection of relative Kernel Kernel reliability resolution
pumber Forecast forecasts frequency reliability resolution 1*(8) S2*(t) .
¢ 1‘1‘ Klt dlt (n‘—dl’)z dlt(l'—dll) Kt(ht'—dlt)z th1t<1—’dlt)
1 0.1 1 0.00 0.0100 0.0000 0.01 0.00
2 0.2 4 0.25 0.0025 0.1875 0.01 0.75
3 0.4 1 1.00 0.3600 0.0000 0.36 0.00
4 0.6 1 1.00 0.1600 0.0000 0.16 0.00
5 0.7 1 1.00 0.0900 0.0000 0.09 0.00
6 0.8 1 1.00 0.0400 0.0000 0.04 0.00
7 0.9 1 1.00 0.0100 0.0000 0.01 0.00
Total 10 0.68 0.75
Average 0.068 0.075
and

Z (znt(l ’_(Znt) =2(znl(1 —(Zn”), n= 1,2,
T 2 _
PS*r,d)=(1/2K) 32 K* I (ra'—dn")?
t=1 n=1

+(1/2K) ‘2“,1{! i d.t(1—d,Y. (25)

n=1

Note that the terms on the RHS of (25) are identical to
the terms on the RHS of (14a). Thus, the special scalar
partition is equivalent to the vector partition. We
present the special scalar partition for the sample
collection of forecasts (see Table 1) in Table 4 in terms
-of the probabilities assigned to state s;.

We are aware of only one study, that by Sanders
(1958, 1963), in which another partition, the scalar
partition, has been used. In his study, which involved
forecasts for many different variables, some of which
were two-state (V=2) variables and some of which
were N-state (V>2) variables, Sanders considered
only one of the two states for the two-state variables
and each state separately for the N-state variables.
Thus, Sanders applied a special scalar, or vector, par-
tition to the two-state forecasts and a scalar partition
to the NV-state forecasts.

With regard to the second question, we have not, as
yet, applied the scalar and vector partitions to any
large collections of forecasts in order to determine the
differences between the respective measures of relia-
bility and resolution. However, as indicated in Section 6,
these differences can be substantial for small collec-
tions of forecasts. In this regard, although we are not
able to determine the magnitude of this difference in
Sanders’ study, the reliability (resolution) of the fore-
casts in his study would certainly have decreased
(increased) if the vector partition had been applied to
the V-state (N> 2) forecasts as well as to the two-state
(Y'=2) forecasts (see Murphy, 1971b). Finally, since we
believe that the vector partition is, in general, the more
appropriate partition (see below), we should indicate
that, since the studies conducted heretofore have been

concerned primarily with two-state variables and since
the evaluators in most, if not all, of these studies have
used the special scalar partition, the results obtained
in these studies are equivalent to the results that
would have been obtained if the vector partition had
been used.

The question of which partition an evaluator should
use can be considered from at least two points of view.
From a “scientific” point of view the answer to this
question depends, in part, upon whether the evaluator,
a meteorologist, is concerned with the reliability and
resolution of forecasts or probabilities. 1f forecasts are
of primary concern, then, since forecasts are vectors, the
vector partition must be used to determine their re-
liability and resolution, while, if the probabilities which
constitute forecasts are of primary concern, then, since
probabilities are scalars, the scalar partition must be
used. In addition, the vector partition is, and the scalar
partition is not, formulated in such a way that a one-to-
one correspondence exists between the probabilities
and the states for each subcollection of forecasts.'®
Since we believe that meteorologists are, or should be,
primarily concerned with the reliability and resolution
of forecasts and that, whenever possible, a one-to-one
correspondence should be maintained between the
probabilities and the states, the vector partition appears
to be more appropriate than the scalar partition from
a sclentific point of view.

From an “economic” point of view the evaluator is a
decision maker, i.e., a user of probability forecasts, in
a two-state (V=2) decision situation. The decision
maker will be particularly concerned with the reliability
and resolution of forecasts in the vicinity of his “indif-
ference” points, i.e., the points, or forecasts, for which
he is indifferent between two actions (see Murphy,
1971a). Since the unit line segment with a length co-
ordinate system (see Section 2) represents the proper
framework within which to depict these indifference
points, only the vector partition can provide the decision

13 This reason for preferring the vector partition to the scalar
partition was brought to the author’s attention by Chien-hsiung
Yang.
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maker with the appropriate information. For example,
consider a decision maker in a two-action, two-state
decision situation who is indifferent between these
actions when the probability of precipitation is 0.2
(and, as a result, the probability of no precipitation is
0.8). This decision maker, then, will be particularly con-
cerned with the reliability and resolution of forecasts in
the vicinity of the point (0.2,0.8). On the other hand, he
will not be particularly concerned with either the reli-
ability and resolution of forecasts in the vicinity of the
point (0.8, 0.2) or the composite reliability and reso-
lution of the probabilities 0.2 and 0.8 (the scalar par-
tition would provide the latter). Thus, the vector
partition appears to be more appropriate than the
scalar partition from an economic as well as a scientific
point of view. :

With regard to the fourth question, we consider only
the effect of the definitions of scalar and vector fore-
casts upon “sample size” in this paper. In the two-state
(N =2) situation the number of distinct scalar forecasts
and the number of distinct vector forecasts are both
equal to S, the number of distinct probability values
(see footnote 9). However, since a collection of fore-
casts consists of M scalar and K (=M/2) vector fore-
casts, the sample size in the scalar framework is twice
that in the vector framework. Thus, an evaluator who
is concerned with obtaining estimates of the reliability
and resolution of certain distinct forecasts will have, on
the average, twice as many scalar as vector forecasts
upon which to base these estimates. Therefore, for
small. collections of forecasts the number of vector
forecasts may not be sufficient to obtain reasonable
estimates of these attributes for certain forecasts. One
possible solution to this problem would be to combine
those subcollections which correspond to “adjacent”
forecasts with the subcollection which corresponds to
the forecast of concern. Such a procedure can be ex-
pected to provide reasonable estimates of these attri-
butes for most, if not all, vector forecasts. We discuss
this problem in greater detail in Murphy (1971b).14

8. Conclusion

In this paper we have described and compared
scalar and vector partitions of the PS in the two-state
(N =2) situation. These partitions, which are based
upon expressions for the PS in which probability fore-
casts are considered to be scalars and vectors, respec-
tively, provide similar, but not equivalent (i.e., linearly
related), measures of the reliability and resolution of
the forecasts. Specifically, the reliability (resolution) of
the forecasts according to the scalar partition is, in
general, greater (less) than their reliability (resolution)
according to the vector partition. A sample collection

14 This problem is of greater concern in N-state (N >2) situa-
tions, in which the number T of distinct vector forecasts is greater
than the number S of distinct scalar forecasts (see footnote 9).
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of forecasts has been used to illustrate the differences
between these partitions.

We have briefly considered several questions related
to the use of these partitions in the two-state (N=2)
situation. In this regard, we have indicated that: 1) a
special scalar partition, which is equivalent to the vector
partition in the two-state situation, has been used in
most, if not all, forecast evaluation studies; 2) the differ-
ences between the reliability and resolution terms in
these partitions can be substantial, at least for small
collections of forecasts; 3) the vector partition appears
to be more appropriate than the scalar partition from
a scientific as well as an economic point of view; and 4)
the use of the vector, rather than the scalar, partition
“reduces” the effective sample size of a collection of
forecasts.

As indicated in Section 2, the differences between the
scalar and vector partitions of the PS become more
evident in N-state (N> 2) situations. We describe and
compare these partitions in /N-state situations in a
separate paper (see Murphy, 1971b).

APPENDIX

We compare the scalar and vector partitions of the
PS, PS(r,d), in (9), and PS*(r,d), in (14b), respectively,
term by term in this Appendix. Since S13=—S22 and
V13=—V22, we compare only S11 and V11, S12 and
V12, S13 and V13, and S21 and V21. Further, since
M=2K, the coefficients of the respective terms are
equal and, as a result, they need not be considered.

We consider only the elements in the scalar terms
which correspond to the subcollections s and s*, for
which 7.,=7* and 7, =7", respectively, where

r*=1—rs, (A1)
and we consider only the elements in the vector terms
which correspond to the subcollections ¢ and #*, for
which ry=r* and r.=r*", respectively, where

r*=u—r, (A2)
The comparison of the sums of these elements is suff-
cient to determine the relationship between the respec-
tive terms, because a collection of scalar or vector fore-
casts consists of such pairs of subcollections of forecasts.

Since the number .S of distinct scalar forecasts and
the number T of distinct vector forecasts are equal in
the two-state (IV=2) situation (see Section 2), we can
assume, without any loss of generality, that the sub-
collection s of scalar forecasts for which 7,,=7* and the
subcollection ¢ of vector forecasts for which ry =r* corre-
spond in such a way that

r=n' (s=1,...,5;¢=1...,7). (A3)
Then, since r'47rf=1,
rot=1—rs, (A4)
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As a result of the correspondence between the sub-
collections of scalar and vector forecasts, note that

M:=K'+K*, (AS)
M =K'+-K*, (A6)
and that
d*=[1/(K+K™ WK d K dy™), (A7)
d* =[1/(K*+K*)YK"d "+ Kidyt).  (AS8)

a. S11 and V11

Let S11(s,s*) denote the sum of the two elements of
concern in the scalar term. Then,

S11(s,s*) = M=(r*)2+M"(r*")?,
or, from (A1) and (A3)-(A6),
S (s,s%) = (K'+K")[(n")*+(r2)*].

Let V11(4,¢*) denote the sum of the two elements of
concern in the vector term. Then

2 2
VILEF) =Kt 32 (r) K" 2 (rf),

n=1 n=1

or
V11(,6%) = K[ (1) (r")* ]+ KL ()4 ()],
or, from (A2),
V11(6,0%) = (K K7)[(rh)*+ ()],
Thus,
S11(s,s*)=V11{,t*),
and, as a result,
S11=V11,
b. S12and Vi2

Let S12(s,s*) denote the sum of the two elements of
concern in the scalar term. Then,

S12(s,s%) = Mersd=~+ M<"r**d**,
or, from (A1)-(A8),

S12(s,s*) = Kr1td1 4+ K 'r " dgt" + K9V d 1 4 K rotdt.
Let V12(z,#*) denote the sum of the two elements of
concern in the vector term. Then,

2 _ 2 a
V125 =Kt Y r,ld.' K7™ Y r,0%d,t,
n=1 n=1
or

Vlz(l',l*) =Klfllézlt+Kt7‘2tdzl‘l’K’*71‘*()_51‘*—}—]{‘*7’2“*6?2”,
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Thus,
S12(s,s*) =V12(4,t%),
and, as a result,
S12=V12.
¢. S13 and VI3

Let S13(s,5*) denote the sum of the two elements of
concern in the scalar term. Then,

813(3,.5‘*) =M8(0-33)2+M3*(d3*)2,

or, from (AS5)—~(A8),

S13(s,s*) =[1/(K*+ K™ [(K'd:*) 242K K" ds'ds*"
+ (K@) 1/ (KKK )
+2KtK#d Pyt - (K dot) ).
Let V13(4,*) denote the sum of the two elements of
concern in the vector term. Then,

2 2
VI3 =K' 3 (da)* K" T (dat™)?,
n=1

n=1
or
V13(1,t%) = K[ (d,*)*4(do) T+ K*[(dr")*+(d=")7],
or
V13(%) =[1/ (K4 K J[(K'dy) + KK (dr')*
(KDY KK (@) T+ [ (K KK D)
+K’Kl*(d1t*)2+(Kt*&zt*)2+K‘K’*(c?2**)2].
The difference between S$13(s,s*) and V13(¢,*) is then
V13(t,1*) —S13(s,5*), where
V13(4,1%) —S13(5,5%) =[1/ (K- K**) JLK K (d")*
___2K1Kt*d1td-2t*+Kth*(CZ2t*)2:|+[1/(K2+Kt*)]
X [Kth*(d_lt*)Z__ ZKth*d_lt*d2t+KtKl*(d2t) 2]’
or
V13(4,1%) —S13(s5,s%) =[ KtK** /(K +K**)]
X [(dit=do*")+(d" —doH)7].
Thus,
V13—-S13=(1/2K) ¥ [KK*/(K*+K™)]

£, t*
X[(drt~dat") - (da* —d2")?],

where the summation is taken over all pairs of sub-
collections # and ¢* for which r'4-r**=u(t, t*=1, ..., T).

d. S21 and V21

Let S21(s,s*) denote the sum of the two elements of
concern in the scalar term. Then,

S21(s,s*) = Meds~+M**d**,
or, from (A5)~(A8),
SZI(S,S*) =Ktczlt+Kz*d2t*+Kt* _lt*“{‘th%t‘
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Let V21(¢,¢*) denote the sum of the two elements of
concern in the vector term. Then,

2 2
V2(1,t) =Kt S d,' K" S d.,
n=1 n=1

or

V21(Z,l*) ~_—thlt‘f‘K’dz‘+K”*0—,’1‘*+K‘*d2”.
Thus,

S21(s,s%) = V21(1,1%),
and, as a result,
S21=V21.
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